This documentation is automatically generated by online-judge-tools/verification-helper
require "../src/mod_int.cr"
AtCoder.static_modint(ModInt7, 7_i64)
alias Mint = AtCoder::ModInt1000000007
# require "../src/mod_int.cr"
# ac-library.cr by hakatashi https://github.com/google/ac-library.cr
#
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# require "./math.cr"
# ac-library.cr by hakatashi https://github.com/google/ac-library.cr
#
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# require "./prime.cr"
# ac-library.cr by hakatashi https://github.com/google/ac-library.cr
#
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# require "./math.cr"
module AtCoder
# Implements [Ruby's Prime library](https://ruby-doc.com/stdlib/libdoc/prime/rdoc/Prime.html).
#
# ```
# AtCoder::Prime.first(7) # => [2, 3, 5, 7, 11, 13, 17]
# ```
module Prime
extend self
include Enumerable(Int64)
@@primes = [
2_i64, 3_i64, 5_i64, 7_i64, 11_i64, 13_i64, 17_i64, 19_i64,
23_i64, 29_i64, 31_i64, 37_i64, 41_i64, 43_i64, 47_i64,
53_i64, 59_i64, 61_i64, 67_i64, 71_i64, 73_i64, 79_i64,
83_i64, 89_i64, 97_i64, 101_i64,
]
def each(&)
index = 0
loop do
yield get_nth_prime(index)
index += 1
end
end
def prime_division(value : Int)
raise DivisionByZeroError.new if value == 0
int = typeof(value)
factors = [] of Tuple(typeof(value), typeof(value))
if value < 0
value = value.abs
factors << {int.new(-1), int.new(1)}
end
until prime?(value) || value == 1
factor = value
until prime?(factor)
factor = find_factor(factor)
end
count = 0
while value % factor == 0
value //= factor
count += 1
end
factors << {int.new(factor), int.new(count)}
end
if value > 1
factors << {value, int.new(1)}
end
factors.sort_by! { |(factor, _)| factor }
end
private def find_factor(n : Int)
# Factor of even numbers cannot be discovered by Pollard's Rho with f(x) = x^x+i
if n.even?
typeof(n).new(2)
else
pollard_rho(n).not_nil!
end
end
# Get single factor by Pollard's Rho Algorithm
private def pollard_rho(n : Int)
typeof(n).new(1).upto(n) do |i|
x = i
y = pollard_random_f(x, n, i)
loop do
x = pollard_random_f(x, n, i)
y = pollard_random_f(pollard_random_f(y, n, i), n, i)
gcd = (x - y).gcd(n)
if gcd == n
break
end
if gcd != 1
return gcd
end
end
end
end
@[AlwaysInline]
private def pollard_random_f(n : Int, mod : Int, seed : Int)
(AtCoder::Math.mul_mod(n, n, mod) + seed) % mod
end
private def extract_prime_division_base(prime_divisions_class : Array({T, T}).class) forall T
T
end
def int_from_prime_division(prime_divisions : Array({Int, Int}))
int_class = extract_prime_division_base(prime_divisions.class)
prime_divisions.reduce(int_class.new(1)) { |i, (factor, exponent)| i * factor ** exponent }
end
def prime?(value : Int)
# Obvious patterns
return false if value < 2
return true if value <= 3
return false if value.even?
return true if value < 9
if value < 0xffff
return false unless typeof(value).new(30).gcd(value % 30) == 1
7.step(by: 30, to: value) do |base|
break if base * base > value
if {0, 4, 6, 10, 12, 16, 22, 24}.any? { |i| value % (base + i) == 0 }
return false
end
end
return true
end
miller_rabin(value.to_i64)
end
private def miller_rabin(value)
d = value - 1
s = 0_i64
until d.odd?
d >>= 1
s += 1
end
miller_rabin_bases(value).each do |base|
next if base == value
x = AtCoder::Math.pow_mod(base.to_i64, d, value)
next if x == 1 || x == value - 1
is_composite = s.times.all? do
x = AtCoder::Math.mul_mod(x, x, value)
x != value - 1
end
return false if is_composite
end
true
end
# We can reduce time complexity of Miller-Rabin tests by testing against
# predefined bases which is enough to test against primarity in the given range.
# https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test
# ameba:disable Metrics/CyclomaticComplexity
private def miller_rabin_bases(value)
case
when value < 1_373_653_i64
[2, 3]
when value < 9_080_191_i64
[31, 73]
when value < 25_326_001_i64
[2, 3, 5]
when value < 3_215_031_751_i64
[2, 3, 5, 7]
when value < 4_759_123_141_i64
[2, 7, 61]
when value < 1_122_004_669_633_i64
[2, 13, 23, 1662803]
when value < 2_152_302_898_747_i64
[2, 3, 5, 7, 11]
when value < 3_474_749_660_383_i64
[2, 3, 5, 7, 11, 13]
when value < 341_550_071_728_321_i64
[2, 3, 5, 7, 11, 13, 17]
when value < 3_825_123_056_546_413_051_i64
[2, 3, 5, 7, 11, 13, 17, 19, 23]
else
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]
end
end
private def get_nth_prime(n)
while @@primes.size <= n
generate_primes
end
@@primes[n]
end
# Doubles the size of the cached prime array and performs the
# Sieve of Eratosthenes on it.
private def generate_primes
new_primes_size = @@primes.size < 1_000_000 ? @@primes.size : 1_000_000
new_primes = Array(Int64).new(new_primes_size) { |i| @@primes.last + (i + 1) * 2 }
new_primes_max = new_primes.last
@@primes.each do |prime|
next if prime == 2
break if prime * prime > new_primes_max
# Here I use the technique of the Sieve of Sundaram. We can
# only test against the odd multiple of the given prime.
# min_composite is the minimum number that is greater than
# the last confirmed prime, and is an odd multiple of
# the given prime.
min_multiple = ((@@primes.last // prime + 1) // 2 * 2 + 1) * prime
min_multiple.step(by: prime * 2, to: new_primes_max) do |multiple|
index = new_primes_size - (new_primes_max - multiple) // 2 - 1
new_primes[index] = 0_i64
end
end
@@primes.concat(new_primes.reject(0_i64))
end
private struct EachDivisor(T)
include Enumerable(T)
def initialize(@exponential_factors : Array(Array(T)))
end
def each(&)
Indexable.each_cartesian(@exponential_factors) do |factors|
yield factors.reduce { |a, b| a * b }
end
end
end
# Returns an enumerator that iterates through the all positive divisors of
# the given number. **The order is not guaranteed.**
# Not in the original Ruby's Prime library.
#
# ```
# AtCoder::Prime.each_divisor(20) do |n|
# puts n
# end # => Puts 1, 2, 4, 5, 10, and 20
#
# AtCoder::Prime.each_divisor(10).map { |n| 1.0 / n }.to_a # => [1.0, 0.5, 0.2, 0.1]
# ```
def each_divisor(value : Int)
raise ArgumentError.new unless value > 0
factors = prime_division(value)
if value == 1
exponential_factors = [[value]]
else
exponential_factors = factors.map do |(factor, count)|
cnt = typeof(value).zero + 1
Array(typeof(value)).new(count + 1) do |i|
cnt_copy = cnt
if i < count
cnt *= factor
end
cnt_copy
end
end
end
EachDivisor(typeof(value)).new(exponential_factors)
end
# :ditto:
def each_divisor(value : T, &block : T ->)
each_divisor(value).each(&block)
end
end
end
struct Int
def prime?
AtCoder::Prime.prime?(self)
end
end
module AtCoder
# Implements [ACL's Math library](https://atcoder.github.io/ac-library/master/document_en/math.html)
module Math
def self.extended_gcd(a, b)
zero = a.class.zero
one = zero + 1
last_remainder, remainder = a.abs, b.abs
x, last_x, y, last_y = zero, one, one, zero
while remainder != 0
quotient, new_remainder = last_remainder.divmod(remainder)
last_remainder, remainder = remainder, new_remainder
x, last_x = last_x - quotient * x, x
y, last_y = last_y - quotient * y, y
end
return last_remainder, last_x * (a < 0 ? -1 : 1)
end
# Implements atcoder::inv_mod(value, modulo).
def self.inv_mod(value, modulo)
gcd, inv = extended_gcd(value, modulo)
if gcd != 1
raise ArgumentError.new("#{value} and #{modulo} are not coprime")
end
inv % modulo
end
# Simplified AtCoder::Math.pow_mod with support of Int64
def self.pow_mod(base, exponent, modulo)
if exponent == 0
return base.class.zero + 1
end
if base == 0
return base
end
b = exponent > 0 ? base : inv_mod(base, modulo)
e = exponent.abs
ret = 1_i64
while e > 0
if e % 2 == 1
ret = mul_mod(ret, b, modulo)
end
b = mul_mod(b, b, modulo)
e //= 2
end
ret
end
# Caluculates a * b % mod without overflow detection
@[AlwaysInline]
def self.mul_mod(a : Int64, b : Int64, mod : Int64)
if mod < Int32::MAX
return a * b % mod
end
# 31-bit width
a_high = (a >> 32).to_u64
# 32-bit width
a_low = (a & 0xFFFFFFFF).to_u64
# 31-bit width
b_high = (b >> 32).to_u64
# 32-bit width
b_low = (b & 0xFFFFFFFF).to_u64
# 31-bit + 32-bit + 1-bit = 64-bit
c = a_high * b_low + b_high * a_low
c_high = c >> 32
c_low = c & 0xFFFFFFFF
# 31-bit + 31-bit
res_high = a_high * b_high + c_high
# 32-bit + 32-bit
res_low = a_low * b_low
res_low_high = res_low >> 32
res_low_low = res_low & 0xFFFFFFFF
# Overflow
if res_low_high + c_low >= 0x100000000
res_high += 1
end
res_low = (((res_low_high + c_low) & 0xFFFFFFFF) << 32) | res_low_low
(((res_high.to_i128 << 64) | res_low) % mod).to_i64
end
@[AlwaysInline]
def self.mul_mod(a, b, mod)
typeof(mod).new(a.to_i64 * b % mod)
end
# Implements atcoder::crt(remainders, modulos).
def self.crt(remainders, modulos)
raise ArgumentError.new unless remainders.size == modulos.size
total_modulo = 1_i64
answer = 0_i64
remainders.zip(modulos).each do |(remainder, modulo)|
gcd, p = extended_gcd(total_modulo, modulo)
if (remainder - answer) % gcd != 0
return 0_i64, 0_i64
end
tmp = (remainder - answer) // gcd * p % (modulo // gcd)
answer += total_modulo * tmp
total_modulo *= modulo // gcd
end
return answer % total_modulo, total_modulo
end
# Implements atcoder::floor_sum(n, m, a, b).
def self.floor_sum(n, m, a, b)
n, m, a, b = n.to_i64, m.to_i64, a.to_i64, b.to_i64
res = 0_i64
if a < 0
a2 = a % m
res -= n * (n - 1) // 2 * ((a2 - a) // m)
a = a2
end
if b < 0
b2 = b % m
res -= n * ((b2 - b) // m)
b = b2
end
res + floor_sum_unsigned(n, m, a, b)
end
private def self.floor_sum_unsigned(n, m, a, b)
res = 0_i64
loop do
if a >= m
res += n * (n - 1) // 2 * (a // m)
a = a % m
end
if b >= m
res += n * (b // m)
b = b % m
end
y_max = a * n + b
break if y_max < m
n = y_max // m
b = y_max % m
m, a = a, m
end
res
end
# Returns `a * b > target`, without concern of overflows.
def self.product_greater_than(a : Int, b : Int, target : Int)
target // b < a
end
def self.get_primitive_root(p : Int)
return 1_i64 if p == 2
n = p - 1
factors = AtCoder::Prime.prime_division(n)
(2_i64..p.to_i64).each do |g|
ok = true
factors.each do |(factor, _)|
if pow_mod(g, n // factor, p) == 1
ok = false
break
end
end
if ok
return g
end
end
raise ArgumentError.new
end
end
end
module AtCoder
# Implements [atcoder::static_modint](https://atcoder.github.io/ac-library/master/document_en/modint.html).
#
# ```
# AtCoder.static_modint(ModInt101, 101_i64)
# alias Mint = AtCoder::ModInt101
# Mint.new(80_i64) + Mint.new(90_i64) # => 89
# ```
macro static_modint(name, modulo)
module AtCoder
# Implements atcoder::modint{{modulo}}.
#
# ```
# alias Mint = AtCoder::{{name}}
# Mint.new(30_i64) // Mint.new(7_i64)
# ```
struct {{name}}
{% if modulo == 998_244_353_i64 %}
MOD = 998_244_353_i64
M = 998_244_353_u32
R = 3_296_722_945_u32
MR = 998_244_351_u32
M2 = 932_051_910_u32
{% elsif modulo == 1_000_000_007_i64 %}
MOD = 1_000_000_007_i64
M = 1_000_000_007_u32
R = 2_068_349_879_u32
MR = 2_226_617_417_u32
M2 = 582_344_008_u32
{% else %}
MOD = {{modulo}}
{% end %}
def self.zero
new
end
@@factorials = Array(self).new
def self.factorial(n)
if @@factorials.empty?
@@factorials = Array(self).new(100_000_i64)
@@factorials << self.new(1)
end
@@factorials.size.upto(n) do |i|
@@factorials << @@factorials.last * i
end
@@factorials[n]
end
def self.permutation(n, k)
raise ArgumentError.new("k cannot be greater than n") unless n >= k
factorial(n) // factorial(n - k)
end
def self.combination(n, k)
raise ArgumentError.new("k cannot be greater than n") unless n >= k
permutation(n, k) // @@factorials[k]
end
def self.repeated_combination(n, k)
combination(n + k - 1, k)
end
def -
self.class.new(0) - self
end
def +
self
end
def +(value)
self + self.class.new(value)
end
def -(value)
self - self.class.new(value)
end
def *(value)
self * self.class.new(value)
end
def /(value)
raise DivisionByZeroError.new if value == 0
self / self.class.new(value)
end
def /(value : self)
raise DivisionByZeroError.new if value == 0
self * value.inv
end
def //(value)
self / value
end
def <<(value)
self * self.class.new(2) ** value
end
def abs
value
end
def pred
self - 1
end
def succ
self + 1
end
def zero?
value == 0
end
def to_i64
value
end
def ==(other : self)
value == other.value
end
def ==(other)
value == other
end
def sqrt
z = self.class.new(1_i64)
until z ** ((MOD - 1) // 2) == MOD - 1
z += 1
end
q = MOD - 1
m = 0
while q.even?
q //= 2
m += 1
end
c = z ** q
t = self ** q
r = self ** ((q + 1) // 2)
m.downto(2) do |i|
tmp = t ** (2 ** (i - 2))
if tmp != 1
r *= c
t *= c ** 2
end
c *= c
end
if r * r == self
r.to_i64 * 2 <= MOD ? r : -r
else
nil
end
end
# ac-library compatibility
def pow(value)
self ** value
end
def val
self.to_i64
end
# ModInt shouldn't be compared
def <(value)
raise NotImplementedError.new("<")
end
def <=(value)
raise NotImplementedError.new("<=")
end
def >(value)
raise NotImplementedError.new(">")
end
def >=(value)
raise NotImplementedError.new(">=")
end
{% if modulo == 998_244_353_i64 || modulo == 1_000_000_007_i64 %}
getter mgy : UInt32
# Initialize using montgomery representation
def self.raw(mgy : UInt32)
ret = new
ret.mgy = mgy
ret
end
def initialize
@mgy = 0
end
def initialize(value : Int)
@mgy = reduce(((value % M).to_u64 + M) * M2)
end
def clone
ret = self.class.new
ret.mgy = @mgy
ret
end
def +(value : self)
ret = self.class.raw(@mgy)
ret.mgy = (ret.mgy.to_i64 + value.mgy - 2*M).to_u32!
if ret.mgy.to_i32! < 0
ret.mgy = (ret.mgy.to_u64 + 2*M).to_u32!
end
ret
end
def -(value : self)
ret = self.class.raw(@mgy)
ret.mgy = (ret.mgy.to_i64 - value.mgy).to_u32!
if ret.mgy.to_i32! < 0
ret.mgy = (ret.mgy.to_u64 + 2*M).to_u32!
end
ret
end
def *(value : self)
ret = self.class.raw(@mgy)
ret.mgy = reduce(ret.mgy.to_u64 * value.mgy)
ret
end
def **(value)
if value == 0
return self.class.new(1)
end
if self.zero?
self
end
b = value > 0 ? self : inv
e = value.abs
ret = self.class.new(1)
while e > 0
if e.odd?
ret *= b
end
b *= b
e >>= 1
end
ret
end
def inv
g, x = AtCoder::Math.extended_gcd(value.to_i32, M.to_i32)
self.class.new(x)
end
def to_s(io : IO)
io << value
end
def inspect(io : IO)
to_s(io)
end
def mgy=(v : UInt32)
@mgy = v
end
@[AlwaysInline]
def reduce(b : UInt64) : UInt32
((b + (b.to_u32!.to_u64 * MR).to_u32!.to_u64 * M) >> 32).to_u32
end
@[AlwaysInline]
def value
ret = reduce(@mgy.to_u64)
ret >= M ? (ret - M).to_i64 : ret.to_i64
end
{% else %}
getter value : Int64
def initialize(@value : Int64 = 0_i64)
@value %= MOD
end
def initialize(value)
@value = value.to_i64 % MOD
end
def clone
self.class.new(@value)
end
def inv
g, x = AtCoder::Math.extended_gcd(@value, MOD)
self.class.new(x)
end
def +(value : self)
self.class.new(@value + value.to_i64)
end
def -(value : self)
self.class.new(@value - value.to_i64)
end
def *(value : self)
self.class.new(@value * value.to_i64)
end
def **(value)
self.class.new(AtCoder::Math.pow_mod(@value, value.to_i64, MOD))
end
delegate to_s, to: @value
delegate inspect, to: @value
{% end %}
end
end
struct Int
def +(value : AtCoder::{{name}})
value + self
end
def -(value : AtCoder::{{name}})
-value + self
end
def *(value : AtCoder::{{name}})
value * self
end
def //(value : AtCoder::{{name}})
value.inv * self
end
def /(value : AtCoder::{{name}})
self // value
end
def ==(value : AtCoder::{{name}})
value == self
end
end
end
end
AtCoder.static_modint(ModInt1000000007, 1_000_000_007_i64)
AtCoder.static_modint(ModInt998244353, 998_244_353_i64)
AtCoder.static_modint(ModInt754974721, 754_974_721_i64)
AtCoder.static_modint(ModInt167772161, 167_772_161_i64)
AtCoder.static_modint(ModInt469762049, 469_762_049_i64)
AtCoder.static_modint(ModInt7, 7_i64)
alias Mint = AtCoder::ModInt1000000007